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Abstract——The ability to modify synaptic transmis-
sion between neurons is a fundamental process of the
nervous system that is involved in development, learn-
ing, and disease. Thus, synaptic plasticity is the ability
to bidirectionally modify transmission, where long-
term potentiation and long-term depression (LTD)
represent the best characterized forms of plasticity. In
the hippocampus, two main forms of LTD coexist that
are mediated by activation of either N-methyl-D-aspar-
tic acid receptors (NMDARs) or metabotropic gluta-

mate receptors (mGluRs). Compared with NMDAR-
LTD, mGluR-LTD is less well understood, but recent
advances have started to delineate the underlying
mechanisms. mGluR-LTD at CA3:CA1 synapses in the
hippocampus can be induced either by synaptic stim-
ulation or by bath application of the group I selective
agonist (R,S)-3,5-dihydroxyphenylglycine. Multiple
signaling mechanisms have been implicated in
mGluR-LTD, illustrating the complexity of this form of
plasticity. This review provides an overview of recent
studies investigating the molecular mechanisms un-
derlying hippocampal mGluR-LTD. It highlights the
role of key molecular components and signaling path-
ways that are involved in the induction and expres-
sion of mGluR-LTD and considers how the different
signaling pathways may work together to elicit a per-
sistent reduction in synaptic transmission.
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I. Introduction

The vast majority of excitatory neurotransmission is
mediated by the amino acid glutamate, which acts on
ionotropic and metabotropic receptors throughout the
central nervous system. Ionotropic glutamate receptors
(iGluRs) consist of NMDA,1 AMPA, and kainate recep-
tors and act as ligand-gated ion channels mediating fast
excitatory neurotransmission (Dingledine et al., 1999).
Metabotropic glutamate receptors (mGluRs) are coupled
to GTP-binding proteins that link the receptors to down-
stream signaling pathways (Sladeczek et al., 1985; Nico-
letti et al., 1986). The family of mGluRs comprises eight
different subtypes (mGluR1–8; now mGlu1–8 receptors
according to the International Union of Pharmacology
classification; Foord et al., 2005) classified into three
groups on the basis of sequence similarities, pharmaco-
logical properties, and intracellular signal transduction
mechanisms (Nakanishi, 1992; Conn and Pin, 1997).
Group I includes mGlu1 and mGlu5 receptors, which
couple to Gq and activate phospholipase C (PLC) (Fer-
raguti et al., 2008). In group II (mGlu2, mGlu3) and
group III (mGlu4, mGlu6, Glu7, and mGlu8), receptors
couple to Gi/Go and inhibit adenylyl cyclase (Conn and
Pin, 1997; Gerber et al., 2007).

Synaptic plasticity is the strengthening or weakening
of synapses in response to different activity patterns.

This involves specific changes in cellular activity within
complex neural networks; together, these encode dis-
tinct memory traces (Bruel-Jungerman et al., 2007). The
two main types of synaptic plasticity involve either a
long-lasting decrease [long-term depression (LTD)] or
increase [long-term potentiation (LTP)] in synaptic effi-
ciency (Citri and Malenka, 2008). A well studied form of
hippocampal synaptic plasticity is NMDAR-mediated
LTP (Bliss and Collingridge, 1993), which has attracted
significantly more attention than the involvement of
mGluRs in LTP (Bashir et al., 1993a; Bortolotto and
Collingridge, 1993). Like LTP, LTD is also predomi-
nantly mediated by activation of synaptic NMDARs
(NMDAR-LTD) (Dudek and Bear 1992; Mulkey and
Malenka 1992) or by mGluRs (mGluR-LTD) (Bashir et
al., 1993a; Oliet et al., 1997; Bellone et al., 2008) at
hippocampal CA3:CA1 synapses. In addition to synaptic
stimulation protocols, selective pharmacological ago-
nists are extensively used for the induction of NMDAR-
LTD and mGluR-LTD. Robust hippocampal NMDAR-
LTD (Lee et al., 1998) and mGluR-LTD (Overstreet et
al., 1997; Palmer et al., 1997; Fitzjohn et al., 1999;
Schnabel et al., 1999a) can be induced by bath applica-
tion of NMDA and agonists of group I mGluRs, respec-
tively.

Other forms of LTD can also be induced in the hip-
pocampus and other brain areas that are independent of
NMDAR and mGluR activation (Berretta and Cheru-
bini, 1998). Furthermore, LTD regulation can be depen-
dent on nonglutamatergic receptors such as adenosine
receptors (de Mendonça et al., 1997; Kemp and Bashir,
1997), adrenergic receptors, and muscarinic receptors
(Kirkwood et al., 1999). In addition, LTD can be induced
by insulin at CA3:CA1 synapses of the hippocampus
(Huang et al., 2004a). mGluR-LTD of both excitatory
and inhibitory transmission can also be induced in a
variety of brain regions (Bellone et al., 2008). However,
this review focuses only on group I mGluR-mediated
LTD of glutamatergic transmission at the CA3:CA1 syn-
apse in the hippocampus. It will describe how synaptic
or pharmacological stimulation can induce mGluR-LTD
and subsequently outline the molecular mechanisms un-
derlying mGluR-LTD induction and expression.

II. Long-Term Depression

LTD is a long-lasting decrease in the efficacy and
strength of synaptic transmission. This phenomenon
was first observed as heterosynaptic depression in which
a reversible reduction of synaptic response in a non-
stimulated pathway resulted after inducing LTP in a
separate pathway in the CA1 region in vitro (Lynch et
al., 1977). Heterosynaptic LTD was also observed in vivo
in the dentate gyrus indicating that the phenomenon
could be applied to different brain areas (Levy and Stew-
ard, 1979). Depotentiation is the reversal of LTP and can
be induced by low-frequency stimulation (LFS). Further-

1 Abbreviations: 12(S)-HPETE, 12(S)-hydroperoxyeicosa-5Z,8Z,10E,
14Z-tetraenoic acid; 4E-BP, eIF4E-binding protein; 5�TOP, 5�-terminal
oligopyrimidine; AA, arachidonic acid; AMPA, �-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid; AMPAR, AMPA receptor; ATF2,
activating transcription factor 2; BAPTA, 1,2-bis(2-aminophe-
noxy)ethane-N,N,N�,N�-tetraacetic acid; CaMKII, Ca2�/calmodulin-de-
pendent protein kinase II; CREB, cAMP response element-binding;
DHPG, (R,S)-3,5-dihydroxyphenyl-glycine; eCB, endocannabinoid; eEF,
eukaryotic translation elongation factor; eEF2K, eukaryotic translation
elongation factor 2 kinase; EF1A, elongation factor 1A; eIF4, eukaryotic
initiation factor 4; EPSC, excitatory postsynaptic current; ERK, extra-
cellular signal-regulated kinase; FMRP, fragile X mental retardation
protein; FXS, fragile X syndrome; GDI, guanine nucleotide dissociation
inhibitor; GRIP, glutamate receptor interacting protein; iGluR, iono-
tropic glutamate receptor; IP3, inositol triphosphate; JNK, Jun N-ter-
minal kinase; KN-62, 4-[(2S)-2-[(5-isoquinolinylsulfonyl)methylamino]-
3-oxo-3-(4-phenyl-1-piperazinyl)propyl]phenylisoquinolinesulfonic acid
ester; KO, knockout; LFS, low-frequency stimulation; LTD, long-term
depression; LTP, long-term potentiation; LY341495, (2S)-2-amino-2-
[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid;
LY367385, (S)-(�)-�-amino-4-carboxy-2-methylbenzeneacetic acid;
MAP1B, microtubule-associated protein 1B; MAPK, mitogen activated
protein kinase; MCPG, �-methyl-4-carboxyphenylglycine; MEK, MAP
kinase or ERK kinase; mGluR, metabotropic glutamate receptor; Mnk1,
MAPK-interacting kinase 1; mTOR, mammalian target of the rapamy-
cin; NCS, neuronal Ca2� sensor; NF-�B, nuclear factor-�B; NMDA,
N-methyl-D-aspartate; NMDAR, NMDA receptor; NP, neuronal pen-
traxin; NPR, neuronal pentraxin receptor; PI3K, phosphoinositide 3-ki-
nase; PICK, protein interacting with C kinase; PKC, protein kinase C;
PLA2, phospholipase A2; PLC, phospholipase C; PP-LFS, paired-pulse
LFS; PSD, postsynaptic density; PTK, protein tyrosine kinase; PTP,
protein tyrosine phosphatase; Rab5, ras in the brain protein 5; Rap1,
repressor activator protein 1; RSK1, ribosomal S6 kinase-1; S6K, S6
kinase; STEP, striatal-enriched tyrosine phosphatase; TACE, tumor
necrosis factor-�-converting enzyme.
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more, depotentiation was the first case of homosynaptic
depression observed in the hippocampus (i.e., synaptic
depression induced only at synapses receiving stimula-
tion) (Staubli and Lynch, 1990; Fujii et al., 1991; Bashir
and Collingridge, 1994; O’Dell and Kandel, 1994). De
novo LTD is the depression of basal synaptic transmis-
sion, which was first observed at CA3:CA1 synapses as a
result of improvements in LFS protocols (Dudek and
Bear, 1992; Mulkey and Malenka, 1992). Homosynaptic
LTD could also be induced at synapses of other brain
regions, such as the perirhinal cortex (Ziakopoulos et al.,
1999; Cho et al., 2000), amygdala (Wang and Gean,
1999), cerebellum (Ito et al., 1982), and striatum (Cala-
bresi et al., 1992). This raised the possibility that the
synaptic phenomena observed in the hippocampus
might be similar to synaptic regulatory mechanisms in
other brain regions.

III. Metabotropic Glutamate Receptor-Mediated
Long-Term Depression

mGluR-mediated LTD was first characterized at par-
allel fiber-Purkinje cell synapses of the cerebellum (Ito
et al., 1982; Kano and Kato, 1987; Ito, 1989). It is de-
pendent on an increase in intracellular Ca2� and acti-
vation of postsynaptic group I mGluRs, specifically
mGlu1 receptors (Linden et al., 1991; Aiba et al., 1994;
Shigemoto et al., 1994). mGluRs were first shown to
mediate hippocampal LTD induction when depotentia-
tion at CA1 synapses was blocked by the group I/II
antagonist �-methyl-4-carboxyphenylglycine (MCPG)
(Bashir et al., 1993b; Bashir and Collingridge, 1994;
Schoepp et al., 1999). A key property of mGluR-LTD in
the hippocampus is that it is NMDAR-independent
(Kemp and Bashir, 2001; Bashir, 2003). LTD induction
by either mGluR or NMDAR activation is not mutually
exclusive, meaning that one form of LTD does not oc-
clude the other (Oliet et al., 1997; Palmer et al., 1997;
Fitzjohn et al., 1999; Huber et al., 2001). This indicates
that the two forms of LTD use different induction mech-
anisms. However, it should be noted that in some areas,
such as the amygdala and perirhinal cortex, synergistic
NMDAR and mGluR activation is required for LTD
(Wang and Gean, 1999; Cho et al., 2000).

A. Synaptically Induced Metabotropic Glutamate
Receptor-Mediated Long-Term Depression

Synaptically induced mGluR-LTD can be evoked in
adult brain slices using paired-pulse LFS (PP-LFS) com-
prising 900 pairs of stimuli delivered at 1 Hz with 50-ms
intervals (Kemp and Bashir, 1999, 2001; Huber et al.,
2000). Paired-pulse stimulation may facilitate mGluR
activation at extrasynaptic sites (Citri and Malenka,
2008). Although the mGluR antagonist MCPG and the
group I mGluR antagonist 7-hydroxyiminocyclopropan-
[b]chromen-1a-carboxylic acid ethyl ester (CPCCOEt)
can block synaptically induced LTD, initial studies

showed this only occurs if the AMPA/kainate receptor
antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)
is also applied (Kemp and Bashir, 1999). It was also
demonstrated that LTD could not be blocked by 6-cyano-
7-nitroquinoxaline-2,3-dione or MCPG alone (Kemp and
Bashir, 1999). However, a separate study using animals
on postnatal days 21 to 28 indicated that only mGluR
activation was required for PP-LFS-induced LTD (Hu-
ber et al., 2000), and in subsequent studies using adult
animals, PP-LFS-induced LTD can also be blocked by
mGluR antagonists alone (Moult et al., 2008). Other
studies using broad-spectrum mGluR antagonists also
highlighted the role of mGluRs in synaptically induced
LTD in the CA1 region (Bolshakov and Siegelbaum,
1994; Oliet et al., 1997; Otani and Connor, 1998; Faas et
al., 2002). Furthermore, application of the mGlu5 re-
ceptor specific antagonist 2-methyl-6-(phenylethy-
nyl)pyridine hydrochloride (MPEP) indicated that
LTD induction was mGlu5 receptor dependent (Bol-
shakov et al., 2000; Faas et al., 2002). The conclusions
drawn from studies investigating the role of group I
mGluRs in CA1 synaptic plasticity can differ because
of the various specificities of subunit antagonists and
differences in the durations of in vitro and in vivo
experiments. To clarify the specific roles of group I
mGluR isoforms in regulating late phases of hip-
pocampal LTD, the effects of mGlu1 and mGlu5 recep-
tor antagonism on synaptic plasticity were monitored
over a prolonged period in vitro (Neyman and Mana-
han-Vaughan, 2008). It is noteworthy that mGlu5 re-
ceptors convert short-term depression into LTD, indi-
cating that this subunit is necessary to mediate the
late-phase of this form of synaptic plasticity.

Compared with NMDAR-LTD, the expression mecha-
nisms underlying synaptically induced mGluR-LTD are
poorly understood. It has been proposed that PP-LFS is
dependent on protein synthesis and is blocked by inhib-
itors of translation but not transcription (Huber et al.,
2000). The role of the mGlu5 receptor in mediating short-
term depression facilitation to LTD is also dependent on
protein synthesis (Neyman and Manahan-Vaughan,
2008). However, a more recent study suggested that
synaptically induced mGluR-LTD in adult CA1 is in-
dependent of protein synthesis (Moult et al., 2008).
PP-LFS may also involve activation of the mitogen acti-
vated protein kinase (MAPK)/extracellular signal-regu-
lated kinase (ERK), which facilitates regulation of pro-
tein synthesis (Gallagher et al., 2004). Furthermore, the
effects of PP-LFS is blocked by inhibitors of both p38
MAPK and protein tyrosine phosphatases (PTPs), sug-
gesting that these signaling cascades may also be fun-
damental (Moult et al., 2008). Although it is generally
accepted that mGluR-LTD induction is dependent on
PTPs, the involvement of protein synthesis, ERK, and
p38 MAPK in synaptically induced mGluR-LTD remains
unclear, and further studies are necessary to resolve any
underlying controversies.
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B. Agonist-Induced (R,S)-3,5-Dihydroxyphenylglycine-
Mediated Long-Term Depression

Broad spectrum mGluR agonists (�)-1-aminocyclopen-
tane-trans-1,3-dicarboxylic acid (ACPD) (Schoepp et al.,
1999) and quisqualate can be used to pharmacologically
induce mGluR-LTD (Bolshakov and Siegelbaum, 1994,
1995; Overstreet et al., 1997) as can the group I-specific
agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) (Scho-
epp et al., 1999) and the selective mGlu5 receptor agonist
(R,S)-2-chloro-5-hydroxyphenylglycine (CHPG) (Palmer
et al., 1997; Fitzjohn et al., 1999; Huber et al., 2000,
2001). Moreover, in the CA1 region, DHPG-LTD is not
induced in the presence of the broad spectrum mGluR
antagonists LY341495 and MCPG (Fitzjohn et al., 1998;
Huber et al., 2000) or after application of the mGlu5

receptor specific antagonist 2-methyl-6-(phenylethy-
nyl)pyridine hydrochloride (Faas et al., 2002). It is note-
worthy that the mGlu1 receptor-specific antagonists
7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid
ethyl ester (Faas et al., 2002) and LY367385 generally
has no effect on the long-term phase, although the short-
term phase is reduced (Fitzjohn et al., 1999; Huang et
al., 2004). The absence of DHPG-LTD in mGlu5 receptor
knockout (KO) mice further highlights the prominent
role of mGlu5 receptor in LTD induction in the CA1
region of the hippocampus (Huber et al., 2001). mGluR-
LTD involves sustained activation of mGlu5 receptor,
supported by the fact that broad spectrum mGluR an-
tagonists reverse DHPG-LTD several hours after induc-
tion (Palmer et al., 1997; Fitzjohn et al., 1999; Watabe et
al., 2002; Huang and Hsu, 2006). However, one study
has suggested that activation of either mGlu1 or mGlu5

receptor is not sufficient to induce DHPG-LTD, even
though LTD is abolished in mGlu5 receptor KO mice
(Volk et al., 2006). In summary, the results from phar-
macological experiments and receptor KO mice indicate
that DHPG-LTD depends predominantly on mGlu5 re-
ceptor activation, although the mGlu1 receptor may
partly contribute to LTD induction.

DHPG is commonly used for characterizing the induc-
tion and expression mechanisms underlying hippocam-
pal mGluR-LTD (Palmer et al., 1997; Huber et al., 2000;
Rouach and Nicoll, 2003; Tan et al., 2003; Gallagher et
al., 2004; Huang et al., 2004b). Using pharmacological
compounds for LTD induction greatly maximizes synap-
tic stimulation. This is ideal for investigating biochem-
ical mechanisms underlying synaptic plasticity. For in
vitro adult hippocampal slice preparation, DHPG-LTD
is usually induced using an extracellular medium that is
Mg2�-free or contains the GABAA receptor antagonist
picrotoxin (Palmer et al., 1997). Under these conditions,
mGluR-LTD is not prevented by application of the
NMDAR antagonist D-2-amino-5-phosphonopentanoate
(AP-5). The addition of picrotoxin removes any influence
from inhibitory neurotransmission at GABAergic syn-
apses. Thus, the overall excitability of the slice is in-

creased, which lowers the threshold for induction of
DHPG-LTD (Palmer et al., 1997). It is likely that DHPG-
LTD and PP-LFS-induced LTD involve similar expres-
sion mechanisms, because the two forms of LTD occlude
each other (Huber et al., 2001). Furthermore, it is evi-
dent that induction of both DHPG-LTD and PP-LFS-
induced LTD employ similar signaling cascades involv-
ing MAPKs and PTPs (Rush et al., 2002; Huang et al.,
2004b; Moult et al., 2008). This corroborates the concept
that DHPG-LTD is a good experimental model for the
investigation of molecular and cellular mechanisms un-
derlying synaptically induced mGluR-LTD.

IV. Induction and Expression Mechanisms of
Metabotropic Glutamate Receptor-Mediated

Long-Term Depression

A. Ca2� Independence and Activation of Kinases

mGluRs are members of the family C G-protein-cou-
pled receptors, which includes GABAB receptors, the
calcium-sensing receptor and a selection of taste, pher-
omone, and olfactory receptors based on structural sim-
ilarities (Hermans and Challiss, 2001). mGluRs function
as G-protein-coupled receptors in that agonist-induced
or constitutive receptor activity leads to G-protein acti-
vation by promoting the exchange of GTP to GDP (Her-
mans and Challiss, 2001). This results in modulation of
receptor-protein interactions and activation of distinct
second messenger cascades. Group I mGluRs preferen-
tially mediate PLC activation, which leads to diacylglyc-
erol production via an increase in inositol triphosphate
(IP3) (Schoepp and Conn, 1993; Schoepp et al., 1994;
Toms et al., 1995). Protein kinase C (PKC) activation
and Ca2� release from intracellular stores is stimulated
by diacylglycerol and IP3, respectively (Pin and Duvoi-
sin, 1995).

Although mGluR-LTD is mediated by mGlu5 receptor, it
is completely Ca2�-independent, because DHPG-LTD in-
duction is not prevented by the intracellular Ca2� chelator
BAPTA and does not depend on extracellular Ca2� (Fitz-
john et al., 2001). In addition, DHPG-LTD induction does
not require presynaptic stimulation (Fitzjohn et al., 1999).
Furthermore, it was demonstrated that Ca2� release from
intracellular stores was not necessary for DHPG-LTD in-
duction because intracellular Ca2� depletion had no effect
(Schnabel et al., 1999a; Fitzjohn et al., 2001). In fact,
DHPG-LTD may induce a decrease in the intracellular
Ca2� levels of the presynaptic cell (Watabe et al., 2002). It
is known that Ca2�/calmodulin-dependent protein kinases
II (CaMKII) has an important role in LTP induction, hence
it may be down-regulated during LTD. Consistent with
this hypothesis, DHPG-LTD at CA3:CA1 synapses is en-
hanced in the presence of the CaMKII antagonist KN-62
(Schnabel et al., 1999b). Although mGluR-LTD in the hip-
pocampus is Ca2�-independent, this is not universally true
for other brain areas. For example, it has recently been
discovered that in the perirhinal cortex, mGluR-LTD in-
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duction is dependent on interactions between the neuronal
Ca2� sensor protein (NCS-1) and protein interacting with
C kinase (PICK1) (Jo et al., 2008). The NCS-1–PICK1
complex associates with PKC near the plasma membrane,
which could facilitate AMPAR endocytosis via phosphory-
lation of the GluA2 AMPAR subunit (the new Interna-
tional Union of Pharmacology iGluR subunit nomencla-
ture is used in this review; see Collingridge et al., 2009).
Furthermore, at cerebellar parallel fiber-stellate cell syn-
apses, mGluR and GABABR activation stimulates a de-
crease in Ca2�-permeable AMPARs (Kelly et al., 2009).
This form of plasticity is therefore dependent upon a
switch of AMPAR subunit composition initiated by both
excitatory and inhibitory inputs and an increase in intra-
cellular Ca2�.

DHPG-LTD induction does not require PKC or protein
kinase A activation (Schnabel et al., 1999a, 2001). In
contrast, synaptically induced LTD in the CA1 may be
dependent on PKC activation under some (Bolshakov
and Siegelbaum, 1994; Oliet et al., 1997) but not all
(Moult et al., 2008) circumstances. PKC may mediate a
decrease in synaptic transmission by stimulating MAPK
cascades (Ferraguti et al., 1999), activating phospho-
lipase D (Boss and Conn, 1992; Pellegrini-Giampietro et
al., 1996) or phospholipase A2 (PLA2) (Aramori and Na-
kanishi, 1992), or modulating cation channel activity
(Sharon et al., 1997).

It can therefore be concluded that group I mGluR-LTD
induction in the hippocampus is Ca2�-independent and
does not involve the typical intracellular signaling cas-
cade that is normally associated with group I mGluR
activation. The molecular mechanisms are thought to
differ substantially between different brain regions as
demonstrated by the fact that LTD induction is Ca2�-
dependent in both the perirhinal cortex and the cerebel-
lum. Although DHPG-LTD and synaptically induced
LTD in the CA1 share common molecular mechanisms,
it should be kept in mind that some differences do exist.

B. Coupling of Group I Metabotropic Glutamate
Receptors to G-Proteins and Scaffolding and
Regulatory Proteins

mGluR-LTD induction is also dependent on G-protein
activation, specifically involving signaling cascades cou-
pled to the G�q subunit. Both synaptically induced LTD
and DHPG-LTD in the CA1 region were prevented in
G�q KO mice (Kleppisch et al., 2001). Although activa-
tion of group I mGluRs typically involves a G-protein
coupled Ca2�-dependent PLC-IP3 signaling pathway,
other Ca2�-independent cascades may also be activated
(Pin and Duvoisin, 1995; Wang et al., 2007). These may
be mediated by scaffolding proteins such as Homer,
which brings multiprotein signaling complexes in close
proximity to group I mGluRs (Brakeman et al., 1997;
Xiao et al., 1998; Sheng and Kim, 2002; Wang et al.,
2007). For example, Homer 1b/c may couple mGlu5 re-
ceptor activation to the Ca2�-independent ERK signal-

ing cascade (Mao et al., 2005). This may involve associ-
ation of mGlu5 receptor with the epidermal growth
factor receptor tyrosine kinase (Peavy et al., 2001) and
activation of Src nonreceptor tyrosine kinases (Luttrell
et al., 1997). To support this theory, it has recently been
shown that mGluR-LTD in the CA1 of the hippocampus
is dependent on mGluR C-terminal interactions with
Homer (Ronesi and Huber, 2008).

In addition to Homers, several other proteins have
been identified that interact with group I mGluRs and
are involved in receptor trafficking and attachment to
the cytoskeleton (Kitano et al., 2002; Enz, 2007;
Francesconi et al., 2009a,b). For example, caveolin-1, an
adaptor protein that associates with lipid rafts and the
main protein of caveolae, binds to and colocalizes with
group I mGluRs (Francesconi et al., 2009b). The inter-
action with caveolin-1 affects the rate of constitutive
mGlu1/5 internalization, thereby regulating the level of
receptor expression at the cell surface. Furthermore,
association with caveolin-1 regulates mGluR-dependent
phosphorylation/activation of ERK-MAPK (Francesconi
et al., 2009b), which is required for mGluR-LTD in the
hippocampus (Gallagher et al., 2004). It has been pro-
posed that calmodulin (CaM) binding stabilizes mGlu5
receptor surface expression (Lee et al., 2008). This inter-
action is modulated by PKC-mediated phosphorylation
of the intracellular C terminus of mGlu5 at serine 901
after receptor stimulation. Ser901 phosphorylation in-
hibits mGlu5 binding to CaM, which leads to reduced
mGlu5 receptor surface expression (Lee et al., 2008). The
role of protein phosphorylation of mGluRs in the regu-
lation of protein-protein interactions, G-protein cou-
pling, and receptor trafficking and desensitization has
been reviewed recently (Kim et al., 2008).

Although the precise functional significance of these
protein interactions in mGluR-LTD is not clear, it is
generally accepted that they provide additional regula-
tory mechanisms that are independent of and sometimes
synergistic with the typical G-protein-coupled second
messenger pathways and connect mGluR-mediated sig-
naling to other receptors and signaling cascades (for
review, see Enz, 2007).

C. Metabotropic Glutamate Receptor-Mediated Long-
Term Depression Signaling Pathways

1. Mitogen-Activated Protein Kinase Signaling Cas-
cades. It has been demonstrated that mGluR-LTD in-
volves all three MAPK subclasses: p38 MAPK (Rush et al.,
2002; Huang et al., 2004b; Moult et al., 2008), Jun N-
terminal kinase (JNK) (Li et al., 2007b), and ERK (Gal-
lagher et al., 2004) (Figs. 1 and 2). It has been implied that
mGluR-LTD induction involves the repressor activator
protein 1 (Rap1)–MAPK kinase 3/6–p38 MAPK cascade in
the CA1 region (Huang et al., 2004b). The pathway is
coupled to endocytotic machineries and is thought to stim-
ulate AMPAR internalization downstream of mGlu5 recep-
tor activation (Fig. 1). Ras and Rap are important GTPases
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that control AMPAR trafficking at synapses and are regu-
lated by activators, guanine-nucleotide exchange factors
and inactivators, and GTPase-activating proteins (Zhu et
al., 2002). It is thought that upon mGlu5 receptor activa-
tion, Rap1 and sequentially MAPK kinase 3/6 are acti-
vated by the release of G�� subunits. This leads to p38
MAPK activation, which promotes AMPAR internalization

via the formation of the GDI-Rab5 complex (Cavalli et al.,
2001) (Fig. 1). The formation of clathrin-coated vesicles is
dependent on specific endocytotic machinery containing
the GDI-Rab5 complex (McLauchlan et al., 1998).
mGluR-LTD induction in the dentate gyrus is also
thought to depend on p38 MAPK and PKC activation,
which may also involve the tumor necrosis factor-recep-
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synthesis or receptor endocytosis. Figure is based on data described in Zhang et al. (2008) and Gladding et al. (2009).
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tor 1 (Rush et al., 2002; Wang et al., 2007). Although
several studies have shown a role for p38 MAPK in
mGluR-LTD, one study reported that ERK, but not p38
MAPK, is required for the induction and regulation of
synaptic protein synthesis (Gallagher et al., 2004) (Fig.
2). The reason for this discrepancy is unclear but may

indicate that mGluR activation can couple to different
signaling mechanisms dependent on the experimental
conditions.

ERK activation may be triggered by mGlu5 receptor
activation by a similar cascade involving Rap1 and mi-
togen-activated protein/ERK kinase (MAPK/MEK)
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(Morozov et al., 2003). This leads to activation of the
downstream effector ribosomal S6 kinase-1 (RSK1),
which is known to be a key regulator of neuronal protein
synthesis in response to synaptic activity (Angenstein et
al., 1998). The ERK/MAPK signaling cascade is also
linked to regulation of m-calpain, an isoform of the large
calpain subunit (Perrin and Huttenlocher, 2002). It is
thought that in addition to phosphorylation, calpain-
mediated truncation of iGluR C-terminal tails is impor-
tant in mediating synaptic plasticity (Guttmann et al.,
2001). Although it has not been directly shown, mGluR-
LTD may involve a decrease in AMPAR-mediated syn-
aptic transmission as a result of an increase in AMPAR
calpain proteolysis (Fig. 1). High NMDA concentrations
lead to an increase in GluA1 proteolytic cleavage, which
is differentially regulated by GluA1 phosphorylation by
CaMKII and protein phosphatases 1 and 2A (Yuen et al.,
2007). It has also been demonstrated that GluA1 phos-
phorylation by Fyn decreases calpain-mediated proteol-
ysis (Rong et al., 2001). Thus, changes in AMPAR
phosphorylation may mediate ERK-activated calpain
proteolysis during mGluR-LTD, although this has yet to
be demonstrated.

It is evident that JNK is also required for LTD induc-
tion under some conditions, because both PP-LFS and
DHPG-LTD were impaired in the CA1 region of JNK KO
mice (Li et al., 2007b) (Figs. 1 and 2). In wild-type mice,
DHPG-LTD results in an increase in the phosphoryla-
tion levels of the JNK1 substrates activating transcrip-
tion factor 2 (ATF2) and c-Jun. Expression of the c-Jun
gene is mediated by ATF2 and c-Jun transcription fac-
tors that combine together to form heterodimers (van
Dam et al., 1995). However, in this study there was no
change in c-Jun expression levels, indicating that post-
translational modifications rather than mRNA tran-
scription were necessary for mediating DHPG-LTD (Li
et al., 2007b). A further study supports a role of c-Jun in
mGluR-LTD expression in neurons (Yang et al., 2006).
Activator protein-1 mediated gene expression is facili-
tated by a process that involves dimerization of c-Jun
and Fos (Schwarzschild et al., 1997; Yang et al., 2006).

It is evident, therefore, that the MAPK signaling cas-
cades are important for the induction and expression of
mGluR-mediated LTD in the hippocampus. The p38
MAPK cascade links mGluR activation to AMPAR inter-
nalization via its coupling to endocytotic machineries.
ERK can modulate neuronal protein synthesis but may
also facilitate a decrease in AMPAR-mediated synaptic
transmission by triggering calpain-mediated GluA1 pro-
teolysis. JNK is also involved in the expression of
mGluR-LTD by activating specific transcription factors
via changes in post-translational modifications.

2. Protein Tyrosine Phosphatases. In contrast to
NMDAR-LTD, mGluR-LTD does not involve serine/thre-
onine phosphatases (Schnabel et al., 2001; Harris et al.,
2004). However, it is clear that mGluR-LTD induction is
dependent on activation of postsynaptic PTPs (Moult et

al., 2002, 2006; Huang and Hsu, 2006; Zhang et al.,
2008; Gladding et al., 2009) (Fig. 1). There is controversy
regarding whether transient (Moult et al., 2002, 2006) or
persistent (Huang and Hsu, 2006) PTP activation is
required. This may be due to differences in experimental
design. It is evident that the AMPAR GluA2 subunit, but
not GluA1 or GluA3, is tyrosine dephosphorylated dur-
ing mGluR-LTD (Moult et al., 2006; Gladding et al.,
2009). Furthermore, AMPAR tyrosine dephosphoryla-
tion is specific to mGluR-LTD, because only GluA1
serine dephosphorylation was observed during NMDA-
LTD (Gladding et al., 2009). Regulation of tyrosine phos-
phorylation is likely to modulate AMPAR interactions
with scaffolding and effector proteins, which subse-
quently alters receptor stability at the synapse. It is
evident that mGluR-LTD involves internalization of sur-
face iGluRs (Snyder et al., 2001; Xiao et al., 2001; Huang
et al., 2004b; Waung et al., 2008; Zhang et al., 2008;
Gladding et al., 2009) and that tyrosine dephosphoryla-
tion of the GluA2 subunit triggers the endocytosis of
surface AMPARs (Gladding et al., 2009). Upon DHPG
application, the rate of AMPAR endocytosis is increased,
and the tyrosine phosphorylation of surface but not in-
tracellular AMPARs is reduced. Hence, it is postulated
that tyrosine dephosphorylation of surface AMPARs ini-
tiates their redistribution away from the synapse via
lateral diffusion and internalization. AMPARs are sub-
sequently rephosphorylated and held at intracellular
compartments, perhaps by enhanced interactions with
scaffolding proteins such as glutamate receptor interact-
ing protein (GRIP) (Gladding et al., 2009).

It has recently been discovered that the PTP that
dephosphorylates the GluA2 subunit during mGluR-
LTD is the striatal-enriched tyrosine phosphatase
(STEP) (Zhang et al., 2008). mGluR activation leads to
elevated STEP expression via activation of both MAPK
and phosphoinositide-3-kinase (PI3K) pathways. In-
creased expression and activation of STEP induces
AMPAR endocytosis via tyrosine dephosphorylation of
the GluA2 subunit (Zhang et al., 2008). Although
ERK1/2 stimulates STEP translation, STEP can also
dephosphorylate and inactivate ERK1/2 in addition to
p38 MAPK (Muñoz et al., 2003; Paul et al., 2003). Be-
cause ERK1/2 and p38 MAPK signaling cascades are
involved in mGluR-LTD induction (Rush et al., 2002;
Gallagher et al., 2004; Huang et al., 2004b; Moult et al.,
2008), STEP activation may be regulated by a feedback
mechanism (Zhang et al., 2008). It is noteworthy that it
has been shown that STEP activity is increased in trans-
genic mouse models of Alzheimer’s disease (Chin et al.,
2005; Snyder et al., 2005), raising the possibility that
mGluR-LTD may be abnormal in these mice, although
this has yet to be tested.

Although PTK inhibitors have no significant effect on
DHPG-LTD, they do prevent the block mediated by PTP
inhibitors (Moult et al., 2006). A similar effect of PTK
inhibitors have been observed with regard to NMDAR-
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LTD (Coussens et al., 2000). It is possible that mGluR-
LTD requires the activation of two parallel independent
pathways (Moult et al., 2006, 2008). The first may in-
volve PTP-mediated dephosphorylation of AMPARs,
whereas the second is dependent on a separate signaling
pathway, such as the p38 MAPK cascade (Rush et al.,
2002; Huang et al., 2004b; Moult et al., 2008). Whereas
PTP activation is required for LTD induction, a parallel
pathway may mediate LTD expression by modulating
AMPAR trafficking. Parallel activation of p38 MAPK
may induce AMPAR internalization by stimulating the
formation of the GDI-Rab5 complex involved in clathrin-
dependent endocytosis (Rush et al., 2002; Huang et al.,
2004b; Moult et al., 2008). PTP inhibition favors PTK
phosphorylation of AMPARs and prevents mGluR-LTD
induction (Moult et al., 2006, 2008). PTK inhibition does
not facilitate LTD induction because it is also necessary
to activate the parallel pathway. PTK inhibitors may
reverse the effect of PTP inhibitors, because PTK acti-
vation is required for the PTP inhibitor block.

In summary, mGluR-LTD induction in the hippocam-
pus is dependent on the activation of PTPs, specifically
STEP, which dephosphorylates the GluA2 subunit of
surface-expressed AMPARs and triggers receptor lateral
diffusion and internalization. This occurs in parallel
with a pathway involving p38 MAPK, which mediates
the clathrin-dependent endocytosis of AMPARs that is
necessary for expression of mGluR-LTD.

3. Proteases. Induction of mGluR-LTD in the hip-
pocampus can be mediated by a member of the group
S8A serine proteases namely subtilisin (MacGregor et
al., 2007). A novel Aspergillus spp. S8A serine protease,
cadeprin (CA1-depressing protein), has also been discov-
ered that similarly induces long-lasting depression of
CA1 neuronal transmission. The LTD mediated by both
subtilisin and cadeprin is dependent on specific activa-
tion of group I mGluRs because there is no effect of
NMDAR or adenosine receptor inhibitors on LTD induc-
tion (MacGregor et al., 2007). mGluR-LTD also involves
cleavage of the neuronal pentraxin receptor (NPR) by
the matrix metalloprotease tumor necrosis factor-�-con-
verting enzyme (TACE) (Cho et al., 2008) (Fig. 1). Al-
though matrix metalloproteases have important roles in
neuronal development and remodelling and in neuronal
precursor cell migration (Del Bigio et al., 1999; Ethell
and Ethell, 2007), they are also necessary for mediating
hippocampal LTP (Tomimatsu et al., 2002; Nagy et al.,
2006). NPR, neuronal pentraxin 1, and neuronal-activi-
ty-regulated pentraxin form an extracellular scaffolding
complex at excitatory synapses, where it associates with
AMPARs and mediates synapse formation (Goodman et
al., 1996; Tsui et al., 1996; O’Brien et al., 1999; Xu et al.,
2003). Bimodulatory regulation of NPs is mediated by
the C-terminal and N-terminal domains that regulate
AMPAR association and NP self-clustering, respectively
(Xu et al., 2003). mGluR stimulation leads to activation
of TACE, which cleaves the NPR transmembrane do-

main. The cleaved NPR remains associated with neuro-
nal-activity-regulated pentraxin and neuronal pen-
traxin 1 but is subsequently internalized via its
incorporation into endosomes with clustered AMPARs.

Although AMPAR tyrosine dephosphorylation can
trigger receptor distribution away from the synapse
(Gladding et al., 2009), NPR cleavage may also mediate
internalization by facilitating the formation of AMPAR-
containing endosomes (Cho et al., 2008). It is evident
that NPs regulate AMPAR clustering depending on the
developmental stage, in that AMPARs are anchored at
synapses during synaptogenesis but are captured at en-
docytic sites during depression of synaptic transmission.
Synaptic Arc/Arg3.1 translation is increased upon
mGluR stimulation, which may also mediate AMPAR
endocytosis (Waung et al., 2008) (Fig. 1). It is postulated
that TACE-mediated NPR cleavage is important for in-
duction of mGluR-LTD, whereas LTD expression may be
maintained by elevated Arc/Arg3.1 synthesis (Cho et al.,
2008). Together, the collected activities of the serine
proteases cadeprin and subtilisin, the Ca2�-activated
protease calpain and the matrix metalloprotease TACE
are important for facilitating mGluR-LTD induction and
expression.

4. Endocannabinoids. Endocannabinoids (eCBs) are
thought to act as a retrograde signal, because upon
postsynaptic depolarization and mGluR stimulation,
they are released into the synaptic cleft (Chevaleyre et
al., 2006). They subsequently diffuse across the cleft to
presynaptic afferents, where synaptic transmission is
generally reduced (Kreitzer, 2005). The eCB receptor
subtype CB1R is expressed in several brain areas, in-
cluding the hippocampus, cerebellum, amygdala, and
cerebral cortex (Chevaleyre et al., 2006), and its activa-
tion leads to a reduction in the probability of neurotrans-
mitter release (Alger, 2002). DHPG-LTD of excitatory
transmission is not believed to involve eCB production,
although the short-term depression seen during DHPG
application is reduced by CB1 receptor antagonism
(Rouach and Nicoll, 2003). In contrast, LTD at inhibitory
synapses on CA1 pyramidal neurons is dependent on
mGluR-stimulated eCB production (for review, see
Chevaleyre et al., 2006).

5. Phosphoinositide 3-kinase–Akt–Mammalian Target
of the Rapamycin Signaling. It has been proposed that
hippocampal group I mGluR activation is coupled to
protein synthesis (Huber et al., 2000) via the PI3K-Akt-
mammalian target of the rapamycin (mTOR) signaling
pathway (Hou and Klann, 2004) (Fig. 2). mGluRs may be
coupled to the PI3K cascade via interactions with Homer
and the cytoplasmic GTPase PI3K enhancer-L (Rong et
al., 2003). Formation of the mGluR-Homer-PI3K en-
hancer complex is necessary to stimulate translation of
5�TOP containing mRNAs via activation of the PI3K
pathway (Ronesi and Huber, 2008). It is believed that
both the PI3K-Akt-mTOR and the ERK-MEK pathways
mediate cap-dependent translation during mGluR-LTD
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(Banko et al., 2006). mGluR-LTD triggers an increase in
the formation and binding of the eukaryotic initiation
factor 4F (eIF4F) complex to the mRNA 5�TOP se-
quence. This is dependent on binding of eIF4E and
eIF4G to the complex, which is regulated by phosphor-
ylation of eIF4E-binding protein (4E-BP). mGluR acti-
vation facilitates the binding of eIF4E to eIF4G by phos-
phorylating 4E-BP2 and preventing eIF4E inhibition.
Furthermore, initiation of mRNA translation is depen-
dent on phosphorylation of eIF4E by Mnk1 (Gingras et
al., 1999), which is also regulated by the ERK-MEK
signaling cascade (Banko et al., 2006). Translational
events can additionally be modulated by mTOR-medi-
ated phosphorylation of ribosomal protein S6 via activa-
tion and phosphorylation of S6 kinase (S6K) (Dufner and
Thomas 1999; Gingras et al., 2001) (Fig. 2). It has re-
cently been discovered that mGluR stimulation in-
creases the phosphorylation of both S6 and S6K and that
this is dependent on activation of all three PI3K, mTOR,
and ERK signaling cascades (Antion et al., 2008a).

Cyclins and cyclin-dependent kinases (CDKs) are not
only involved in cell cycle control (Li et al., 2007a) but
also have diverse roles in the regulation of basal tran-
scription (Rickert et al., 1996), apoptosis (Crumrine et
al., 1994), and synaptic plasticity (Richter, 2001). Sev-
eral signaling molecules such as Rho (Welsh et al.,
2001), JNK (Zhang et al., 2005), NF-�B (Guttridge et al.,
1999) and the PI3K/AKT/mTOR/p70S6K1 pathway (Gao
et al., 2003, 2004) mediate the regulation of the expres-
sion and translocation of the cyclinD1-CDK4 complex in
the hippocampus. It is postulated that mGluR-LTD ac-
tivates the PI3K/AKT/mTOR cascade, which stimulates
the cyclinD1-CDK4 complex via the retinoblastoma
(Rb)/E2F1 pathway leading to modulation of protein
synthesis (Li et al., 2007a) (Fig. 2).

In parallel with the ERK-MEK pathway, the PI3K-
Akt-mTOR signaling cascade is therefore essential for
triggering cap-dependent translation during mGluR-
LTD. This is done by facilitating the formation of the
translation initiation eIF4F complex by mediating the
activation of both S6 and SK6 and by stimulating the
formation of the cyclinD1-CD4 complex, all of which are
important for modulation of protein synthesis.

D. Regulation of Gene Expression

It is evident that mGluR-LTD involves regulation of
gene expression via MAPK-mediated modulation of spe-
cific transcription factors under some experimental con-
ditions (Fig. 2). DHPG-LTD involves ERK-mediated ac-
tivation of the E-26-specific (ETS) domain transcription
factor Elk-1, which is a tertiary complex factor (Wang et
al., 2004; Mao et al., 2005). ERK can also activate cAMP
response element-binding (CREB), which, with Elk-1,
facilitates expression of the gene c-Fos (Mao et al., 2005).
After mGluR activation, ERK may modulate CREB ex-
pression via the activation of RSK1 (Xing et al., 1998;
Frödin and Gammeltoft, 1999; Gallagher et al., 2004)

and mitogen and stress-activated protein kinase-1 ki-
nases (Arthur and Cohen, 2000). ERK is not localized
solely to the nucleus but is also active in dendrites such
that translation and transcription can be regulated in
close proximity to synapses (Kelleher et al., 2004a,b).

NF-�B is a further transcription factor that is acti-
vated in mGluR-LTD via PI3K, Ras, and p38 MAPK
signaling pathways (O’Riordan et al., 2006). The NF-�B
transcription factor C-Rel is specifically required for
long-term maintenance of hippocampal mGluR-LTD. Al-
though previous studies have indicated that mGluR-
LTD involves translational rather than transcriptional
regulation, this may be because synaptic changes were
monitored at an early phase (�90 min) rather than at a
late phase (2–3 h) of LTD (Huber et al., 2000; O’Riordan
et al., 2006). In contrast to other transcription factors,
NF-�B was the first to be synaptically localized (Korner
et al., 1989) and upon synaptic activation is rapidly
trafficked from the synapse to the nucleus (Meberg et
al., 1996; Wellmann et al., 2001; Meffert et al., 2003). In
mGluR-LTD stabilization, NF-�B may act as a signal
messenger to facilitate an increase in specific gene ex-
pression in response to synaptic activity (O’Riordan et
al., 2006).

In summary, regulation of specific gene expression
during mGluR-LTD is dependent on activation of MAPK
and PI3K signaling pathways, which leads to modula-
tion of transcription factors such as NF-�B, Elk-1, and
CREB. These transcription factors are not restricted to
the nucleus, meaning that rapid synaptic modulation of
gene transcription can be mediated in response to
mGluR activation.

E. Identity of Newly Synthesized Proteins

There is much evidence to suggest that mGluR-LTD is
dependent on rapid dendritic protein synthesis (Huber
et al., 2000, 2001; Hou and Klann, 2004; Park et al.,
2008; Waung et al., 2008; Zhang et al., 2008), although
mGluR-LTD may also be protein synthesis independent
(Fig. 2). Indeed, it has been shown that protein synthesis
initiation is regulated by mGluR interactions with
Homer (Ronesi and Huber, 2008). Protein synthesis may
be important for either promoting AMPAR endocytosis
or by producing a retrograde signaling molecule that is
able to regulate presynaptic neurotransmitter release.
To facilitate rapid modulation of synaptic transmission,
key mediator proteins can be synthesized in close prox-
imity to the synapse (Sutton and Schuman, 2006).
mRNA-protein complexes can therefore be transported
along the dendrite via interactions with microtubule
filaments in the cytoskeleton. Indeed, group I mGluR
activation mediates increased translation of AMPAR
subunit mRNA in nearby regions of the dendrite
(Grooms et al., 2006). In response to mGluR-LTD induc-
tion, local translation facilitates rapid protein recruit-
ment to the synapse such that synaptic transmission can
be efficiently modulated. Use of specific pharmacological
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agents and KO mice may aid the identification of pro-
teins involved in mGluR-LTD. For example, 4E-BP2 KO
mice have increased mGluR-LTD indicating that 4E-
BP2 has an important role in negatively regulating syn-
aptic activity (Banko et al., 2006). 4E-BP2 is phosphor-
ylated by the PI3K-Akt-mTOR pathway, which
facilitates formation of the eIF4F translation initiation
complex (Gingras et al., 1999). Modulation of 4E-BP2
phosphorylation is therefore important for regulation of
translation during mGluR-LTD (Banko et al., 2006).

It is known that STEP is the PTP that tyrosine-de-
phosphorylates the AMPAR GluA2 subunit and medi-
ates AMPAR endocytosis (Zhang et al., 2008). This study
specifically showed that mGluR activation facilitates an
increase in STEP translation in synaptosomes via acti-
vation of MAPK and PI3K pathways. This is consistent
with previous reports demonstrating that dendritic pro-
tein synthesis is regulated by stimulation of both signal-
ing pathways (Wang and Tiedge, 2004). Because STEP
is quickly degraded after mGluR activation, it is postu-
lated that de novo synthesis of STEP is required upon
LTD induction (Zhang et al., 2008).

Interactions with the postsynaptic density (PSD) 95/
disc-large/zona occludens (PDZ) domain-containing pro-
teins GRIP, AMPAR binding protein, and PICK1 are
important for modulating AMPAR stabilization at the
synapse. DHPG-LTD involves tyrosine dephosphoryla-
tion of the AMPAR GluA2 subunit (Moult et al., 2006;
Zhang et al., 2008, Gladding et al., 2009). This may
induce surface AMPAR mobilization via modulation of
GRIP/AMPAR binding protein and PICK1 interactions.
Indeed, it has been reported that DHPG-stimulated
AMPAR endocytosis is dependent on disruption of
GRIP-GluA2 binding (Davidkova and Carroll, 2007). In
addition, DHPG stimulates an increase in microtubule-
associated protein 1B (MAP1B) synthesis, which binds
to GRIP1 and promotes AMPAR internalization (David-
kova and Carroll, 2007) (Fig. 1). MAP1B is highly ex-
pressed outside the synapse, indicating that MAP1B-
GRIP1 interactions may facilitate AMPAR endocytosis
by sequestering GRIP away from the PSD. MAP1B
translation is dependent on inhibition of eukaryotic
translation elongation factor 2 (eEF2) kinase, which re-
sults in increased activation of eEF2 (Ryazanov and
Davydova, 1989; Redpath et al., 1993). This is particu-
larly interesting because eEF2 kinase inhibition is me-
diated by mTOR and p70 S6 kinase (Wang et al., 2001;
Browne and Proud, 2004), which are thought to be in-
volved in mGluR-LTD (Hou and Klann, 2004; Banko et
al., 2006).

mGluR-LTD may involve synthesis of the cytoplasmic
fragile X mental retardation protein (FMRP), which is
found to be expressed in neuronal dendrites (Feng et al.,
1997; Weiler et al., 1997) (Fig. 2). FMRP forms a protein
complex with polyribosomes at specific mRNA sites and
acts as a negative regulator of mRNA translation (Jin
and Warren, 2003). A role for FMRP was indicated in

mGluR-LTD when FMRP expression levels were en-
hanced upon mGluR activation (Weiler et al., 1997).
Furthermore, hippocampal slices from Fmr1-KO mice
showed increased mGluR-LTD (Huber et al., 2002), in-
dicating that FMRP is important for modulation of pro-
tein synthesis upon synaptic activation. In contrast to
wild-type mice, the LTD in Fmr1-KO mice is indepen-
dent of protein synthesis and activation of the ERK
signaling cascade (Huber et al., 2002; Koekkoek et al.,
2005; Hou et al., 2006; Nosyreva and Huber, 2006).
Protein translation independence is mediated by a re-
duction in mGluR-Homer interactions such that the
PI3K-Akt-mTOR pathway is not activated in the KO
mice (Ronesi and Huber, 2008). It is possible that in the
absence of FMRP, LTD can still be induced and main-
tained by pre-existing proteins that can mediate
AMPAR endocytosis. In wild-type mice, mGluR-LTD in-
volves a rapid increase in FMRP translation that is
subsequently ubiquitinated and degraded (Hou et al.,
2006). Degradation of FMRP permits the translation of
FMRP-targeted mRNAs and thus provides a dynamic
mechanism for regulating protein synthesis during
mGluR-LTD.

FMRP can regulate the translation of several mRNAs,
and a particularly interesting synaptic target is the
adaptor protein PSD-95. mGluR stimulation leads to an
increase in PSD-95 translation, which is dependent on
regulation by FMRP (Todd et al., 2003). Moreover, it has
been confirmed that FMRP mediates stabilization of
PSD-95 mRNA through direct interactions with its 3�
untranslated region (Zalfa et al., 2007). This stabiliza-
tion is enhanced by mGluR activation, implying that
FMRP mediates the regulation of key synaptic proteins
under both basal and stimulated conditions. FMRP is
also thought to regulate the synthesis of other key syn-
aptic players (i.e., AMPAR subunits GluA1/GluA2 and
CaMKII�) upon mGluR activation (Muddashetty et al.,
2007). Furthermore, modulation of AMPAR internaliza-
tion is dependent on negative regulation of protein syn-
thesis by FMRP (Nakamoto et al., 2007). FMRP is there-
fore crucial for preventing mGluR stimulation leading to
excessive AMPAR endocytosis via overactivation of sig-
naling cascades. Patients with fragile X syndrome (FXS)
have cognitive deficits that may be due to impairments
in synaptic glutamate signaling dependent on key effec-
tor and adaptor proteins such as PSD-95 (Bear et al.,
2004; Koukoui and Chaudhuri, 2007). Anxiety and epi-
lepsy symptoms are also elevated in patients with FXS
and Fmr1-KO mice, which could be due to disrupted
interactions between mGluRs and the short isoform
Homer1a (Penagarikano et al., 2007). Homer1a com-
petes with the longer Homer isoforms for mGluR bind-
ing (Xiao et al., 1998; Fagni et al., 2002), which is im-
portant for modulation of mGluR-mediated synaptic
transmission in the hippocampus (Kammermeier and
Worley, 2007). Because Homer1a can protect against
induction of epilepsy, anxiety, and pain (Szumlinski et
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al., 2006), it is postulated that mGluR interactions with
both short and long Homer isoforms are impaired in FXS
(Penagarikano et al., 2007).

Other proteins synthesized during hippocampal
mGluR-LTD are the ribosomal protein S6 and the
5�TOP-encoded protein elongation factor 1A (EF1A) (An-
tion et al., 2008a). Although mGluR-LTD involves an
increase in the phosphorylation of S6K and S6 via acti-
vation of PI3K, mTOR, and ERK signaling pathways,
LTD expression and protein synthesis is not dependent
on activation of S6Ks. mGluR-LTD was normal or en-
hanced in the S6K1- and S6K2-KO mice, and there was
no reduction in S6 phosphorylation or EF1A synthesis
(Antion et al., 2008b). However, in these mice, LTD may
be mediated by activation of the remaining S6K or by
up-regulation of a different kinase such as Akt (Hou and
Klann, 2004; Antion et al., 2008b). It is interesting that
mGluR-LTD increases the synthesis of the translation
factor EF1A, because it is also up-regulated during late
LTP induction (Tsokas et al., 2005). In addition to its
role as an elongation factor, it can also facilitate the
polymerization of actin-monomers to form F-actin (Liu
et al., 2002). Furthermore, EF1A mRNA translation is
down-regulated by binding of FMRP (Sung et al., 2003).
This is consistent with the hypothesis that mGluR-LTD
leads to down-regulation of FMRP, which permits the
synthesis of key proteins such as EF1A and S6 necessary
for LTD induction. Similar to EF1A, S6 may have an
important role in mediating different forms of synaptic
plasticity, because an increase in S6 phosphorylation is
also detected during LTP and learning (Kelleher et al.,
2004b). Upon mGluR activation, S6K may also phos-
phorylate other substrates in addition to S6, such as
eEF2 and eIF4B, which have been implicated in protein
synthesis dependent mGluR-LTD (Park et al., 2008). It
is evident that mGluR-stimulated protein translation is
regulated by several converging signaling pathways
that facilitate the regulation of multiple target proteins.
For example, the PI3K-Akt-mTOR pathway mediates
direct regulation of S6K but also modulates cap-depen-
dent translation by 4E-BP (Banko et al., 2006). Regula-
tion of cap-dependent translation proteins Mnk1, eIF4E,
and 4E-BP is also dependent on activation of the MEK-
ERK signaling pathway (Banko et al., 2006).

It has recently been discovered that mGluR-LTD in-
volves rapid de novo dendritic synthesis of the immedi-
ate-early gene Arc/Arg3.1 via activation of eEF2K and
eEF2 (Park et al., 2008) (Fig. 2). Up-regulation of Arc
transcription also involves activation of CaMKII, PLC,
ERK1/2, and NMDARs but not L-type voltage-gated
Ca2� channels (Wang et al., 2009). Arc/Arg3.1 is an
important homeostatic regulatory protein involved in
modulation of AMPAR-dependent excitability (Shep-
herd et al., 2006). Arc/Arg3.1 interacts with endophilin
2/3 and dynamin, which are important components of
the AMPAR endocytic pathway (Chowdhury et al., 2006)
(Fig. 1). Thus, Arc/Arg3.1 synthesis is linked to in-

creased AMPAR endocytosis and down-regulation of
AMPAR-mediated synaptic activity upon LTD induc-
tion. mGluRs are linked to eEF2K via Homer and
eEF2K dissociation is induced upon mGluR stimulation
and activation of CaM. Activated dissociated eEF2K
subsequently phosphorylates eEF2, which inhibits
global mRNA translation (Park et al., 2008). However,
phosphorylated eEF2 leads to specific up-regulation of
Arc/Arg3.1 synthesis, which results in modulation of
AMPAR endocytosis and regulation of cap-dependent
and -independent initiation of translation (Pestova et
al., 2001).

Under basal conditions, Arc/Arg3.1 translation is neg-
atively regulated by FMRP. Upon mGluR-LTD induc-
tion, FMRP is dephosphorylated by PP2A, which re-
duces its binding to target mRNAs (Narayanan et al.,
2007). This facilitates rapid de novo local synthesis of
specific mRNAs at close proximity to the synapse. It is
evident that activation of eEF2K is a parallel pathway to
inhibition of FMRP after mGluR activation (Park et al.,
2008). mGluR-LTD is enhanced in Fmr1-KO mice but is
reduced upon ablation of Arc/Arg3.1 function. Because
mGluR-LTD is not completely abolished in the dou-
ble-KO mice, it suggests that pre-existing Arc/Arg3.1
can partially mediate LTD induction upon stimulation of
mGluRs (Park et al., 2008). This is corroborated by a
study stating that AMPAR endocytosis can be partly
mediated by pre-existing Arc/Arg3.1, but maintenance
of elevated internalization is dependent on further de
novo synthesis (Waung et al., 2008). Furthermore, this
synthesis occurs rapidly in dendrites and not the soma
and transport of Arc/Arg3.1 from the soma to the den-
drites is not required. mGluR stimulation may increase
Arc/Arg3.1 trafficking to the postsynaptic membrane
and enhance its interactions with AMPARs and/or key
endocytic mediators such as dynamin and endophilin 2/3
(Waung et al., 2008). Although Arc/Arg3.1 can facilitate
actin polymerization (Messaoudi et al., 2007), it is un-
known whether Arc/Arg3.1 is necessary for mGluR-me-
diated dendritic remodeling (Vanderklish and Edelman,
2002) and whether this underlies LTD induction. It is
clear that Arc/Arg3.1 is important for modulation of
AMPAR endocytosis, yet it is likely that this occurs in
conjunction with other key processes such as TACE-
mediated cleavage of NPR (Cho et al., 2008) and STEP-
mediated tyrosine dephosphorylation of the GluA2 sub-
unit (Moult et al., 2006; Zhang et al., 2008; Gladding et
al., 2009).

In conclusion, it is highly evident that mGluR-LTD
involves the up- and down-regulation of the expression
of several proteins that are important for modulation of
gene transcription, regulation of actin polymerization,
and mediation of AMPAR internalization. FMRP is a big
player in regulating protein synthesis because it is itself
modulated upon mGluR-LTD induction and is also re-
sponsible for regulating the synthesis of key synaptic
proteins such as PSD-95, GluA1, GluA2, and CaMKII�
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and also the dendritic immediate-early gene Arc/Arg3.1.
This has direct consequences on the regulation of
AMPAR endocytosis and actin dynamics that occurs con-
comitantly with altered synthesis of other regulatory
proteins such as STEP and MAP1B. It is therefore clear
that the mGluR-LTD induction and expression is depen-
dent on complex interconnected regulatory mechanisms,
which finely control the expression levels and localiza-
tion of several key proteins throughout the LTD time
course.

V. Locus of Metabotropic Glutamate Receptor-
Mediated Long-Term Depression Expression

There is conflicting evidence regarding the expression
mechanism of hippocampal mGluR-LTD in terms of
whether it is postsynaptic or presynaptic (Anwyl, 2006).
For example, a presynaptic mechanism is suggested by
studies showing that mGluR-LTD involves changes in
paired-pulse facilitation (Fitzjohn et al., 2001; Watabe et
al., 2002; Rouach and Nicoll, 2003; Tan et al., 2003). An
increase in the EPSC amplitude coefficient of variation
(CV) and a reduction in the frequency of mini-EPSCs is
also observed during synaptically induced LTD (Bolsha-
kov and Siegelbaum, 1994) and DHPG-LTD (Fitzjohn et
al., 2001; Xiao et al., 2001). It has also been demon-
strated that DHPG-LTD involves a decrease in neuro-
transmitter release, indicated by zinc fluorescence de-
tection of exocytosis (Qian and Noebels, 2006). Negative
postsynaptic changes include a lack of alteration in sen-
sitivity to uncaged L-glutamate upon DHPG-LTD induc-
tion (Rammes et al., 2003). However, these experiments
were performed at relatively low temperatures
(22–24°C), which may prevent the detection of postsyn-
aptic changes such as receptor internalization (Snyder
et al., 2001; Xiao et al., 2001; Huang et al., 2004b;
Waung et al., 2008; Zhang et al., 2008; Gladding et al.,
2009).

It is evident that postsynaptic application of endocytotic
inhibitors can prevent DHPG-LTD, and it has also been
reported in both hippocampal slices and primary hip-
pocampal neurons that internalization of surface iGluRs
occurs in response to mGluR activation (Snyder et al.,
2001; Xiao et al., 2001; Huang et al., 2004b; Waung et al.,
2008; Zhang et al., 2008; Gladding et al., 2009). DHPG-
LTD also involves a reduction in the amplitude of mini-
EPSCs consistent with a postsynaptic mechanism (Xiao et
al., 2001). It is possible that the synaptic mechanisms
underlying mGluR-LTD are subject to a developmental
switch, which would explain why there are conflicting
ideas regarding the expression mechanism (Nosyreva and
Huber, 2005). It is proposed that mGluR-LTD is presyn-
aptically expressed in neonatal synapses, because there is
no change in surface expression of AMPARs, and it seems
to be independent of protein synthesis. During synapse
maturation, there is a developmental switch involving
mGluR regulation of AMPAR trafficking via the produc-

tion of new synaptic proteins. At immature synapses, reg-
ulation of presynaptic release probability rather than
AMPAR internalization may be a more efficient way of
depressing transmission at synapses (Nosyreva and Hu-
ber, 2005). It has also been reported that there is a devel-
opmental change in mGluR-LTD induction mechanisms
(Kumar and Foster, 2007), where PTPs are required for
DHPG-LTD in young adult rats (5–8 months) but not in
aged rats (22–26 months). A recent study of NMDAR-
mediated synaptic currents (EPSCsNMDAR) in DHPG-LTD
found that both depression and LTD are initiated by acti-
vation of mGlu1 and mGlu5 receptors but are not depen-
dent on tyrosine kinase or phosphatase activity, and in-
crease in intracellular Ca2�, or protein synthesis (Ireland
and Abraham, 2009). Although the mechanism underlying
the transient short-term depression is likely to be presyn-
aptic, the LTD is mediated postsynaptically by lateral
movement of synaptic NMDARs via actin depolarization
(Ireland and Abraham, 2009).

Synaptically induced mGluR-LTD involving postsynap-
tic induction but presynaptic expression would require a
membrane-permeable retrograde signaling molecule to
pass from the postsynaptic CA1 neuron to the presynaptic
CA3 neuron. A strong candidate is 12(S)-hydroperoxyei-
cosa-5Z,8Z,10E,14Z-tetraenoic acid [12(S)-HPETE], a 12-
lipoxygenase metabolite of arachidonic acid (AA) (Fein-
mark et al., 2003). It has been shown that the AA cascade
is essential for mGluR-LTD induction and is initiated via
the cytosolic PLA2 enzyme (Bolshakov and Siegelbaum,
1995) (Fig. 2). This is activated by p38 MAPK consistent
with previous reports implicating that mGluR-LTD re-
quires p38 MAPK activation (Bolshakov et al., 2000; Rush
et al., 2002; Zhu et al., 2002; Huang et al., 2004b; Moult et
al., 2008). Long-term plasticity may be maintained by the
positive feedback mechanism in which p38 MAPK is also
stimulated by the production of AA (Hii et al., 1998; Kaly-
ankrishna and Malik, 2003). However, this pathway im-
plicates that the Ca2�-sensitive cytosolic PLA2 enzyme is
activated upon a rise in postsynaptic Ca2� after mGluR-
LTD induction. This is inconsistent with previous evidence
indicating that mGluR-LTD is Ca2�-independent, but im-
plies that there may be alternative retrograde signaling
molecules that can act in the absence of Ca2�. Potential
presynaptic targets of a retrograde signal are voltage-
gated ion channels or constituents of the presynaptic re-
lease machinery (Fitzsimonds and Poo, 1998; Zakharenko
et al., 2002). For example, the presynaptic S-type K� chan-
nel is activated by 12(S)-HPETE, which leads to inhibition
of neurotransmitter release by decreasing Ca2� influx
(Feinmark et al., 2003).

Because of conflicting results from studies, it cannot
be conclusively stated whether hippocampal mGluR-
LTD expression is presynaptic or postsynaptic. Inconsis-
tent results from these studies could be due to differ-
ences in experimental design or temperature or to
differences in the age of the animal used. It is entirely
possible that both presynaptic (neurotransmitter re-
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lease) and postsynaptic (AMPAR internalization) ex-
pression mechanisms occur. It is generally thought that
induction involves the postsynaptic activation of PTPs
and other signaling cascades, which could include a ret-
rograde signaling molecule that passes back to the pre-
synaptic neuron. If both pre- and postsynaptic mecha-
nisms do contribute to mGluR-LTD, it may be that they
can occur simultaneously or that differing experimental
conditions will favor one mechanism over the other.
Further work is required to delineate the precise com-
plexities of the induction and expression mechanisms of
this form of synaptic plasticity.

VI. The Pathological Significance of
Metabotropic Glutamate Receptor-Mediated

Long-Term Depression

Investigating the molecular mechanisms underlying
hippocampal mGluR-LTD is essential for understanding
and treating diseases such as FXS and addiction (Gru-
eter et al., 2007) in which synaptic plasticity abnormal-
ities are displayed. Patients with FXS have cognitive
deficits (Bear et al., 2004; Koukoui and Chandhuri,
2007) and also anxiety and epilepsy symptoms, which
could be due to impaired synaptic glutamate signaling or
to disrupted interactions between mGluRs and interact-
ing proteins such as Homer 1a (Penagarikano et al.,
2007). It is therefore crucial to understand how mGluR-
LTD occurs in the healthy functioning brain, so as to
delineate how this is dysfunctional in FXS. Understand-
ing the molecular mechanisms could facilitate the dis-
covery of effective drug targets that could specifically
and efficiently ameliorate the symptoms of this neuro-
developmental disorder. Because the FMRP protein is a
translational repressor, in its absence in patients with
FXS, there is overexpression of specific mRNAs in re-
sponse to mGlu5 receptor activation. Therapeutic inter-
ventions have arisen from the idea that mGluR signal-
ing could be modulated back to normal levels by
pharmacologically blocking or antagonizing the mGlu5
receptor (Dölen and Bear, 2009). Furthermore, in the
Fmr1-KO mouse model of autism, it has been shown
that normal mGluR function and synaptic signaling can
be restored by preventing 50% of mGlu5 receptor signal-
ing (Dölen et al., 2007). FXS is the most common cause
of autism, and it is hoped that therapeutics for FXS
could also benefit autism sufferers. Clinical trials are
currently ongoing to investigate whether mGluR target-
ing drugs are efficient, safe, and specific in improving
the symptoms of patients with FXS and/or autism
(Dölen and Bear, 2009). It would be most rewarding and
beneficial if drugs targeted for one disorder were also
effective in pharmacologically treating a related illness.

A recent behavioral study identified that mGlu5 re-
ceptor plays a fundamental role in the extinction or
reversal of learning. This has raised the intriguing pos-
sibility that these receptors provide a potential target

for new treatment strategies in processes of maladaptive
learning (Xu et al., 2009). Because some psychiatric
disorders are associated with unwanted disturbing
memories, it could be advantageous to be able to reverse
the acquisition of these specific memories such that a
healthy lifestyle can be resumed. The development of
specific mGlu5 receptor modulatory pharmacological
compounds for treatment of FXS, autism, and neuropsy-
chiatric disorders has highlighted the biological and
pathological significance of mGluR-LTD in the mamma-
lian brain and why it is crucial to investigate the molec-
ular mechanisms underlying this form of synaptic plas-
ticity.

Conclusions

This review has considered the complexities of the
molecular mechanisms underlying mGluR-mediated
LTD in the hippocampus. As illustrated in Figs. 1 and 2,
regulation of mGluR-dependent synaptic transmission
is accomplished by coordinated activation of multiple
signaling pathways that collaborate to precisely regu-
late postsynaptic and presynaptic processes. It is clear
that recent studies have broadened our understanding
of both the induction and expression mechanisms of this
form of synaptic plasticity. Future work will continue to
expand our knowledge of key molecules, signaling cas-
cades, and mechanisms required for long-lasting depres-
sion of hippocampal mGluR-mediated synaptic trans-
mission. To understand further the complexities of the
molecular mechanisms, one needs to investigate in
greater detail the role of newly synthesized proteins in
the induction and expression of LTD, how individual
signaling pathways activated interconnect to form a co-
ordinated network that precisely modulates synaptic ac-
tivity, and how this form of synaptic plasticity translates
into hippocampal learning and memory in a freely mov-
ing animal. For example, further investigations could be
employed to determine the precise mechanisms under-
lying PTP-triggered AMPAR internalization. The GluA2
residue that STEP dephosphorylates is unknown; it has
not been confirmed that this indeed facilitates AMPAR
lateral diffusion before internalization from extrasynap-
tic endocytotic zones, and the fate of the internalized
receptors has not been determined. This is just one
example of the many finer details that are missing from
what is currently known about the complexities of this
molecular mechanism. Further work is also required to
eliminate some of the controversies that exist regarding
the expression locus or the involvement of protein syn-
thesis or specific signaling pathways.

In conclusion, it cannot be denied that valuable
progress has been made to improve our understanding of
this form of synaptic plasticity, and our continual ongo-
ing investigative efforts will only be of further benefit to
increase our understanding of learning and memory in
the normal and dysfunctional brain.
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